Free idempotent generated semigroups: subsemigroups, retracts and maximal subgroups
نویسندگان
چکیده
منابع مشابه
On Maximal Subgroups of Free Idempotent Generated Semigroups
We prove the following results: (1) Every group is a maximal subgroup of some free idempotent generated semigroup. (2) Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup. (3) Every group is a maximal subgroup of some free regular idempotent generated semigroup. (4) Every finite group is a maximal subgroup of some free...
متن کاملSubgroups of Free Idempotent Generated Semigroups: Full Linear Monoids
We develop some new topological tools to study maximal subgroups of free idempotent generated semigroups. As an application, we show that the rank 1 component of the free idempotent generated semigroup of the biordered set of a full matrix monoid of size n×n,n > 2 over a division ring Q has maximal subgroup isomorphic to the multiplicative subgroup of Q.
متن کاملFree Idempotent Generated Semigroups over Bands
We study the general structure of the free idempotent generated semigroup IG(B) over an arbitrary band B. We show that IG(B) is always a weakly abundant semigroup with the congruence condition, but not necessarily abundant. We then prove that if B is a normal band or a quasi-zero band for which IG(B) satisfies Condition (P ), then IG(B) is an abundant semigroup. In consequence, if Y is a semila...
متن کاملRight Simple Subsemigroups and Right Subgroups of Compact Convergence Semigroups
Clifford and Preston (1961) showed several important characterizations of right groups. It was shown in Roy and So (1998) that, among topological semigroups, compact right simple or left cancellative semigroups are in fact right groups, and the closure of a right simple subsemigroup of a compact semigroup is always a right subgroup. In this paper, it is shown that such results can be generalize...
متن کاملFree Idempotent Generated Semigroups and Endomorphism Monoids of Free G-acts
The study of the free idempotent generated semigroup IG(E) over a biordered set E began with the seminal work of Nambooripad in the 1970s and has seen a recent revival with a number of new approaches, both geometric and combinatorial. Here we study IG(E) in the case E is the biordered set of a wreath product G ≀ Tn, where G is a group and Tn is the full transformation monoid on n elements. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2017
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2017.1378893